skip to main content


Search for: All records

Creators/Authors contains: "Tan, Sha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Layered transition metal oxides are appealing cathodes for sodium‐ion batteries due to their overall advantages in energy density and cost. But their stabilities are usually compromised by the complicated phase transition and the oxygen redox, particularly when operating at high voltages, leading to poor structural stability and substantial capacity loss. Here an integrated strategy combing the high‐entropy design with the superlattice‐stabilization to extend the cycle life and enhance the rate capability of layered cathodes is reported. It is shown that the as‐prepared high‐entropy Na2/3Li1/6Fe1/6Co1/6Ni1/6Mn1/3O2cathode enables a superlattice structure with Li/transition metal ordering and delivers excellent electrochemical performance that is not affected by the presence of phase transition and oxygen redox. It achieves a high reversible capacity (171.2 mAh g−1at 0.1 C), a high energy density (531 Wh kg−1), extended cycling stability (89.3% capacity retention at 1 C for 90 cycles and 63.7% capacity retention at 5 C after 300 cycles), and excellent fast‐charging capability (78 mAh g−1at 10 C). This strategy would inspire more rational designs that can be leveraged to improve the reliability of layered cathodes for secondary‐ion batteries.

     
    more » « less
  3. Abstract

    Several abundant but yet uncultivated bacterial groups exist in extreme iron- and sulfur-rich environments, and the physiology, biodiversity, and ecological roles of these bacteria remain a mystery. Here we retrieved four metagenome-assembled genomes (MAGs) from an artificial acid mine drainage (AMD) system, and propose they belong to a new deltaproteobacterial order, Candidatus Acidulodesulfobacterales. The distribution pattern of Ca. Acidulodesulfobacterales in AMDs across Southeast China correlated strongly with ferrous iron. Reconstructed metabolic pathways and gene expression profiles showed that they were likely facultatively anaerobic autotrophs capable of nitrogen fixation. In addition to dissimilatory sulfate reduction, encoded by dsrAB, dsrD, dsrL, and dsrEFH genes, these microorganisms might also oxidize sulfide, depending on oxygen concentration and/or oxidation reduction potential. Several genes with homology to those involved in iron metabolism were also identified, suggesting their potential role in iron cycling. In addition, the expression of abundant resistance genes revealed the mechanisms of adaptation and response to the extreme environmental stresses endured by these organisms in the AMD environment. These findings shed light on the distribution, diversity, and potential ecological role of the new order Ca. Acidulodesulfobacterales in nature.

     
    more » « less
  4. Abstract

    The practical application of lithium (Li) metal anode (LMA) is still hindered by non‐uniformity of solid electrolyte interphase (SEI), formation of “dead” Li, and continuous consumption of electrolyte although LMA has an ultrahigh theoretical specific capacity and a very low electrochemical redox potential. Herein, a facile protection strategy is reported for LMA using a double layer (DL) coating that consists of a polyethylene oxide (PEO)‐based bottom layer that is highly stable with LMA and promotes uniform ion flux, and a cross‐linked polymer‐based top layer that prevents solvation of PEO layer in electrolytes. Li deposited on DL‐coated Li (DL@Li) exhibits a smoother surface and much larger size than that deposited on bare Li. The LiF/Li2O enriched SEI layer generated by the salt decomposition on top of DL@Li further suppresses the side reactions between Li and electrolyte. Driven by the abovementioned advantageous features, the DL@Li||LiNi0.6Mn0.2Co0.2O2cells demonstrate capacity retention of 92.4% after 220 cycles at a current density of 2.1 mA cm–2(C/2 rate) and stability at a high charging current density of 6.9 mA cm–2(1.5 C rate). These results indicate that the DL protection is promising to overcome the rate limitation of LMAs and high energy‐density Li metal batteries.

     
    more » « less
  5. Abstract

    Manganese‐rich layered oxide materials hold great potential as low‐cost and high‐capacity cathodes for Na‐ion batteries. However, they usually form a P2 phase and suffer from fast capacity fade. In this work, an O3 phase sodium cathode has been developed out of a Li and Mn‐rich layered material by leveraging the creation of transition metal (TM) and oxygen vacancies and the electrochemical exchange of Na and Li. The Mn‐rich layered cathode material remains primarily O3 phase during sodiation/desodiation and can have a full sodiation capacity of ca. 220 mAh g−1. It delivers ca. 160 mAh g−1specific capacity between 2–3.8 V with >86 % retention over 250 cycles. The TM and oxygen vacancies pre‐formed in the sodiated material enables a reversible migration of TMs from the TM layer to the tetrahedral sites in the Na layer upon de‐sodiation and sodiation. The migration creates metastable states, leading to increased kinetic barrier that prohibits a complete O3‐P3 phase transition.

     
    more » « less